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Abstract
This paper presents an open-source dataset, RflyMAD, a Multicopter Abnormal Dataset developed by the Reliable
Flight Control (Rfly) Group aiming to promote the development of research fields such as Fault Detection and Isolation
(FDI) or Health Assessment (HA). The full 114 GB dataset includes 11 types of faults under 6 flight statuses which are
adapted from the ADS-33 file to cover more cases where the multicopters have different levels of mobility when faults
occur. In the total of 5629 flight cases, the fault time is up to 3283 minutes, and there are 2566 cases for software-
in-the-loop (SIL) simulation, 2566 cases for hardware-in-the-loop (HIL) simulation, and 497 cases for real flight. As it
contains simulation data based on RflySim and real flight data, it is possible to improve the quantity while increasing the
quality of the data. In each case, there are ULog, Telemetry log, Flight information, and processed files for researchers
to use and review. The RflyMAD dataset could be used as a benchmark for fault diagnosis methods and the support
relationship between simulation data and real flight is verified by transfer learning methods. In the future, more methods
will be presented as a baseline and RflyMAD will be updated with more data and types. In addition, the dataset and
associated toolkit are available at https://rfly-openha.github.io/documents/4 resources/dataset.html.
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1 Introduction
With the rapid development of the technology and
related industries of Unmanned Aerial Vehicles (UAVs),
multicopters have become increasingly popular and are more
commonly used in daily life than ever before (Quan 2017).
The increased use of multicopters has led to growing concern
for their health and flight safety. Researchers have long been
focusing on the problem of Fault Detection and Isolation
(FDI) in UAVs, and many achievements have been made.
Among these results, analytical redundancy is widely used
for FDI problems and can be divided into Model-Based
and Knowledge-Based methods (Fourlas and Karras 2021).
Both methods, particularly the Knowledge-Based methods,
require simulation or real flight datasets of UAVs. Compared
to research fields such as computer vision (Deng et al. 2009),
the types of datasets designed for UAVs are fewer. Moreover,
there is a notable scarcity of datasets that take the failures of
UAVs into account (Keipour et al. 2021).

Common datasets related to UAVs are found to focus on
SLAM, localization, and image recognition, such as UAVid
by Lyu et al. (2020). Antonini et al. (2020) provide the
Blackbird UAV dataset, which offers high-rate IMU and
image data for approximately ten hours, suitable for visual-
inertial navigation and SLAM. Nguyen et al. (2022) present
the NTU VIRAL dataset, which is used for simultaneous
localization and mapping. NASA’s Open Data Portal1

records a series of datasets related to FDI and HA problems
in aircraft, such as C-MAPSS Aircraft Engine Simulator
Data and ADAPT Dataset. Although the categories of
related datasets are sufficient, most of them contain merely
simulation data and focus on component-level faults. Due to

the high cost of hardware in real experiments, most datasets
reflecting both normal and abnormal statuses of UAVs often
contain simulation data while datasets recording system-
level faults are scarce. ALFA is a real UAV dataset at system-
level for fixed wings with abnormal statuses to overcome this
problem, as reported by Keipour et al. (2021).

Although ALFA provides a real dataset with the fault
status of UAVs, the amount of fault cases is still lower
than expected and the dataset is only suitable for fixed-wing
aircraft. The Rfly Multicopter Abnormal Data (RflyMAD)
is designed to resolve the problem of insufficient data
in research fields such as FDI and HA. Considering the
balance between the amount of data and the real flight data,
the RflySim platform is used to generate simulation data.
RflySim is a model-based development (MBD) platform that
enables rapid development (Quan et al. 2020; Dai et al.
2021). A nonlinear multicopter model with high accuracy
and fault injection modules is built in this platform. Together
with the PX4 autopilot, concepts of SIL and HIL simulation
are applied to collect the SIL and HIL simulation data. Next,
with the modified source code of PX4 firmware, the same
fault injection modules are used to collect the real flight data.
RflyMAD contains different kinds of faults in its actuators
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(motors and propellers), sensors (accelerometer, gyroscope,
magnetometer, barometer, and GPS), and environmental
effects. Each fault type has a variety of fault parameters
that indicate the degree of failure. For each case, telemetry
logs from QGroundControl and ULog from the autopilot are
both provided, along with a CSV file containing the specific
flight information. Besides, the ground truth data with a high
frequency from the RflySim platform in simulation and ROS
bag files in real flight are both recorded. Lastly, basic usage
methods and toolkits are provided to make RflyMAD more
user-friendly. The main contributions of this paper are as
follows.
• Compared with existing datasets related to UAVs, the

significant feature of RflyMAD is that it has real flight
abnormal data from different types of multicopters. To
the best of our knowledge, this is the first fault dataset
for multicopters with multiple flight statuses and fault
types, which contains both real flight and simulation
data. High-quality simulation data has a similar form to
real flight data and can be used as a supplement to real
flight data.

• The format of the RflyMAD dataset and the collection
methods of simulation and real flight data are introduced
in detail in this paper and on our website. Under the format
introduced in this paper, we developed data processing
tools, which can select and extract data topics in the
RflyMAD. According to the data collection methods,
the dataset can be extended in the future by using the
provided RflySim platform in simulation or modifying
PX4 firmware to add a fault injection module in real flight.

• A transfer learning method is used in this paper to verify
that the SIL and HIL simulation data have an excellent
support relationship with the real flight data, demonstrating
that the simulation data has high quality and could replace
part of the high-cost real flight data when training the
diagnosis model, which can improve the utilization of real
flight data. A better conclusion could be obtained from the
support relationship of SIL with HIL, proving that the two
have similar characteristics. The support relationships of
different types of multicopters in real flight data are also
verified.
The remainder of the paper is organized as follows:

Section 2 presents the properties of the RflyMAD dataset.
Section 3 introduces the hardware and software used for data
collection and how to collect the data. Section 4 verifies the
support relationship between different types of data. Section
5 outlines future work and identifies current dataset issues.

2 Properties of RflyMAD

To enhance the quality and quantity of data, RflyMAD
consists of simulation and real flight data. In this section, the
properties of the dataset will be introduced, including data
formats, dataset hierarchy, and fault types.

2.1 Data formats
2.1.1 Data types in one flight Each flight within the
dataset comprises four types of raw data along with
corresponding processed files, which could be described as
follows.

• Flight Information. It contains the flight command
(e.g., takeoff, landing, and moving to a target posi-
tion), fault types, and fault parameters. The data is pro-
vided in comma-separated values (CSV) format named
TestInfo.CSV within the dataset.

• ULog. It is used to log uORB topics as messages, including
device inputs (e.g., sensors, RC inputs), internal state (e.g.,
attitude, EKF states), and string messages. The file could
be converted into CSV conveniently. This data is provided
in original format and processed CSV format.

• Telemetry Log. TLog is recorded by the ground sta-
tion, and the main content is the information com-
municated between a multicopter and its corresponding
QGroundControl2 (QGC). Thus frequency of transmission
is decided by the communication quality in real flight or
the performance of the simulation computer. This data
is provided in two formats: tlog(original) and CSV (pro-
cessed).

• Ground Truth Data. It is generated by the RflySim plat-
form during the simulation and recorded at approximately
120Hz. It contains the kinematics information, fault states,
and motor speeds. This data is abbreviated as “GTData” in
the subsequent text and is provided in CSV format.

• BAG. It is generated by the ROS system during each
real flight. It contains the position, attitude, and control
commands of a multicopter. This data is provided in two
forms: the raw, unprocessed data, and the processed BAG
data converted to CSV files.

It is worth noting that the GTData only exists in simulation
data, while the BAG files only exist in real flight data.
Therefore, each flight is associated with four types of data.
However, due to the widespread use of ROS in the robotics
community and the upgrade of the simulation tools, which
will be introduced in Section 2.4, the BAG or ROS bag data
will be added to the simulation data in the subsequent data
updates so that the users can have a wider range of choices.

2.1.2 Choose your most suitable data type The Rfly-
MAD dataset provides different types of data, as introduced
in Section 2.1.1, users ought to select the proper data type
according to task requirements and their own usage habits.
Here a brief introduction of usage scenarios for different data
types is given as a simple guidance.

Flight Information data can be used as a preview of a flight
case, which includes control commands in flight, fault types,
fault duration and etc. As mentioned above, the quality of
TLog data depends on the quality of the communication,
so this type of data can be used to diagnose remote control
related faults. GTData only exists in simulation sub-dataset,
for it comes from the simulation platform. GTData contains
the true value from the simulation physical model, even the
real speed of motors, which is usually difficult to obtain in
the real flight data. Due to the simplicity of the CSV format,
users who are not familiar with ULog and BAG can also use
this data easily.

ULog data is the most common data format when
using open source autopilot, such as PX4, and can be
be supplemented by flight enthusiasts in the future. Fault
diagnosis algorithms developed using this format can be
easily deployed on UAVs without an onboard computer. This
data format can also be easily preprocessed by using official
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or our developed preprocessing tools. In addition, the timing
information record of ULog data is more standardized.

BAG, also called ROS bag data, is currently widely used
in the robotics community for debug or data collection. ROS
bag data can realize functions such as data playback and
format conversion by simple commands. Real-time online
or offline fault diagnosis algorithms can be developed by
using ROS bag data, and can be easily deployed to onboard
computers of UAVs. ROS uses the Unix timing strategy,
which also has advantages in time-dependent data processing
in practice.

All of the aforementioned data can be transformed, stored,
and preprocessed automatically by the toolkits we developed.
More importantly, the toolkits we developed can preprocess
different data types, such as BAG and ULog, into a single
processed file, making the development of FDI algorithm
more convenient.

2.2 Scale
RflyMAD is a large-scale dataset in the research field of UAV
abnormal data, for it contains a great amount of simulation
data which could be divided into SIL and HIL simulation
data in detail. Together with the real flight data, RflyMAD
comprises three sub-datasets, whereas the fault types and
flight statuses in each sub-dataset are still similar.

Table 1. Fault types and flight numbers in RflyMAD.

Type of Type of Sub-dataset
Faults SIL Sim HIL Sim Real Flight

Motor (1-4) 921 921 231
Propeller (1-4) 435 435 ×
Low Voltage 20 20 ×

Wind 150 150 ×
Load Lose 150 150 ×

Sensors’ Noise 50 50 82
Accelerometer 128 128 20

Gyroscope 128 128 20
Magnetometer 128 128 20

Barometer 128 128 20
GPS 128 128 20

No Fault 200 200 84

Total 2566 2566 497

Note:× represents this item does not exist in sub-dataset.
Motor(1-4) represents the number of failure motors is in
range of 1 to 4.

TABLE 1 displays the number of flights in each sub-
dataset associated with different fault types. There are 11
fault types in simulation data and 7 in real flight data to cover
the common faults that may occur in a multicopter. Notably,
data about different combinations of failure units of motor
or propeller are collected. Most importantly, faults from the
power system, sensors, and multicopter’s frame structure to
the external environment are considered. We firmly believe
that the inclusion of more fault types will result in a more
extensive dataset.

In TABLE 1, the total number of flight cases amounts
to 5629, so the total size of RflyMAD is about 114.6 GB.
In each flight of a sub-dataset, the fault parameters which
represent the degree of failure are different even if they have
the same fault types. Due to the high cost of a real flight with

Table 2. Flight statuses in RflyMAD.

Flight Type of Sub-dataset
Status SIL Sim HIL Sim Real Flight

Hover X X X
Waypoints X X X

Velocity Control X X X
Circling X X X

Acceleration X X X
Deceleration X X ×

Note: Xrepresents this item existing in sub-dataset and
× represents not.

injected faults, the real flight dataset contains fewer instances
with high failure degrees compared to the simulation dataset.

Considering when the fault occurs, the multicopter may
be at different flight statuses and thus have different
performance. To fully study the mobility of the multicopter,
6 flight statuses are designed during the time when the
fault occurs. TABLE 2 shows the flight statuses in each
sub-dataset. The selected flight status refers to the Mission-
Task-Elements in the ADS-33 file, which is a specification
document for U.S. military rotorcraft flight quality (Baskett
and Daniel 2000). As this document is mainly used for
helicopters, some basic tasks are selected and modified to be
suitable for multicopters. In each flight status, the RflyMAD
dataset contains all fault types with different fault parameters
in order to satisfy various conditions for multicopters.

2.3 Hierarchy
The hierarchy of the RflyMAD dataset is illustrated in Figure
1, featuring five layers delineating its internal structure. The
outermost layer comprises three sub-datasets. The second
layer contains flight status information, with 6 types for
simulation data and 5 types for real flight data. The third
layer represents fault type, while the fourth layer consists of
a series of cases with the same flight status and fault, but with
varying fault parameters. The fifth layer consists of four basic
files for each flight. The reason why RflyMAD is designed
as such a complicated structure is to make data of each flight
have a distinct classification. This organizational approach
facilitates the work of researchers in designing model-based
or data-driven algorithms. Additionally, the fault type, fault
parameters and fault injection time could be found in the
Flight information, ULog, and BAG data in each flight.

2.4 Convenient platform and extensibility
2.4.1 RflySim in data collection This paper utilizes
the RflySim platform to design and realize simulation
experiments, and simultaneously carry out real flight
experiments. A detailed introduction to the RflySim platform
and how to use it to collect fault data is given in this section.

RflySim is a model-based platform for unmanned system
control and safety testing. It uses MATLAB/Simulink
as the core component of the platform to model UAVs
and design controllers in autopilot, and uses Python to
implement top-level visual or swarm algorithms, trajectory
planning, and safety assessment functions. Development
based on RflySim usually includes the following five
phases: modeling phase, controller design phase, SIL
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/RflyMAD Dataset
SIL Simulation Data

(similar to HIL simulation data)
HIL Simulation Data

<flight status>{circling, ...}
<fault type>{motor, GPS, ...}

<case number>{1,2,...,N}
TestInfo.CSV
ULog data

log <datetime>.ulg
log <topicName1>.csv
...
log <topicNameX>.csv

Telemetry data
Ground Truth data

Real Flight Data
<flight status>{circling, ...}

<fault type>{motor, GPS, ...}
<case number>{1,2,...,N}
TestInfo.CSV
ULog data

log <datetime>.ulg
log <topicName1>.csv
...
log <topicNameX>.csv

Telemetry data
ROS bag data

rfly real <datetime>.bag
rfly real <topicName1>.csv
...
rfly real <topicNameX>.csv

Toolkit

Figure 1. RflyMAD file hierarchy.

simulation phase, HIL simulation phase and real flight test
phase. Through the automatic code generation technology
of MATLAB/Simulink, the controller can be easily
and automatically downloaded to the hardware for HIL
simulation and real flight test. In addition, complex
algorithms that are not suitable for deployment on autopilot
can be easily immigrated to ROS on the onboard computer
of UAVs. Therefore, in the latest version of RflySim, SIL and
HIL simulation also support to simulate together with ROS.

When the simulation starts running, RflySim will start
multiple programs. The RflySim3D program displays the
UAVs and the surrounding environment, the QGC program
is used as the ground station, and CopterSim is the core
program of the platform, which can realize the transmission
of internal platform messages and external mavlink, visual
and other messages. The more detailed information about
RflySim can be found in Dai et al. (2021) and RflySim
platform website: https://rflysim.com/doc/en/.

As for using RflySim for fault data collection, some
additional design is required. Firstly, from the perspective
of facilitating the construction of the dataset, we construct
control sequence for flight statuses and fault types of the
UAVs. The control sequence includes the flight trajectory,
speed, fault type, and fault parameters which represented
the magnitude of the fault. Secondly, when constructing
the multicopter dynamic model, a fault injection module
that can receive fault parameters is added. This module
can be used not only in simulation but also in real flight.

Finally, an automatic testing Python script is construct,
which can automatically complete the startup of the RflySim
platform, the initialization of the multicopter, the reading and
sending of flight statuses and fault types commands, and the
recording and saving of the required data to construct the
dataset. In SIL and HIL simualtion, the automatic testing
script can repeatedly read control sequences from a set of
sequences for testing, and complete the shutdown and restart
of the RflySim platform, improving the efficiency of tests. In
real flight experiments, this function is not added for safety
consideration. And how the simulation and real flight data
are collected exactly will be introduced in Section 3.

With the above introduction, the reason why we use
RflySim as a fault injection experiment and data collection
platform instead of using existing simulation platforms such
as Gazebo and AirSim is that RflySim has the following
advantages:
• (1) Model-based development platform. By using

MBD methods, RflySim can achieve detailed modeling
and physical parameters setting of the power system,
sensors, and structures of the multicopter. However,
the modification of physical parameters in Gazebo is
complicated, and the number of parameters that can be
modified in AirSim is quite limited.

• (2) Fault injection module. RflySim contains a complete
fault injection module. The fault injection module is
built into the dynamic model of the multicopter, and
fault injection can be quickly realized through external
commands. This method is suitable for both simulation and
real flight. Other simulation platforms have not developed
corresponding functional modules.

2.4.2 Data extensibility Based on the convenient simu-
lation platform RflySim, if the current data available in
RflyMAD is insufficient for the application or research
needs, users can use this platform to design and conduct
their own experiments and collect simulation data. Access
to the RflySim platform 3 is freely available, and users
are encouraged to further explore its capabilities. With this
platform, users only need to write the control sequence in
advance to arrange the flight statuses and fault types to
be injected. The data will be collected automatically by
programs during the simulation.

3 Dataset Construction
The RflyMAD dataset is divided into three parts, each with
its own unique collection method. This section will provide a
detailed introduction to these methods and then explain how
to construct the dataset.

3.1 Simulation data
Figure 2(a) and Figure 2(b) demonstrate the collection of
simulation data. The hardware required for SIL simulation
data consists simply of a high-performance computer.
Additionally, a PixHawk autopilot is required for HIL
simulation (Quan et al. 2020; Dai et al. 2021; Wang et al.
2021).

In SIL simulation, RflySim serves as our core platform
for data collection. A nonlinear multicopter dynamic model
is built in RflySim, which has high accuracy compared to
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Figure 2. Methods to collect simulation data. Different colors
represent different software or hardware equipment. The lines
with arrows demonstrate the direction of signal transmission
and also indicate the source of each data type in the dataset.

a real multicopter. The model includes an actuator module,
battery module, GPS module, IMU module, and environment
module that considers air drag and wind effects. The physical
parameters of each module are obtained or fitted from real-
world data. Besides, a fault injection module is designed
to pass the fault parameters into the model. During the
simulation, the fault parameters take effect by multiplying
with throttle signals of motors or sensor signals, or by being
added with them as noise or deviation values. The control
sequence comprises a series of flight commands and fault
information, which determines the flight statuses, fault types,
fault parameters of the multicopter, and the start and end
times of the fault. In the end, the control sequence will
be recorded in the dataset as Flight Information. The core
algorithm uses PX4 firmware to control the multicopter
model of RflySim during simulation.

When the simulation begins, the RflySim platform will
run the multicopter model and call the QGC program,
and then execute the control sequence sequentially. After
sending the fault injection commands, the fault parameters
take effect and the corresponding module loses its function
partially or completely. Simultaneously, the performance of
the multicopter becomes abnormal, indicating the success of
fault injection. Upon completion of the simulation, TLog,
ULog, and GTData will be obtained from the RflySim
platform and subsequently stored in the dataset.

In HIL simulation, in addition to the simulation
computer, a PX4 autopilot is required to work together
with the RflySim platform. Unlike SIL simulation, HIL
simulation keeps core algorithms on autopilot and establishes
communication with the RflySim platform through interfaces
like MAVLink communication protocol. Since sensor
modules are embedded in the multicopter model of the
RflySim platform, the sensor signal from the PX4 autopilot

needs to be shielded. Consequently, only the core algorithms
of PX4 autopilot are used to control the model and generate
ULog in autopilot’s SD card. Other parts are similar to SIL
simulation.

3.2 Real flight data

(a) Droneyee X200 (b) Droneyee X450 (c) Droneyee X680
(a) Droneyee X200(a) Droneyee X200 (b) Droneyee X450 (c) Droneyee X680(b) Droneyee X450

(a) Droneyee X200 (b) Droneyee X450 (c) Droneyee X680

(c) Droneyee X680

Figure 3. Quadcopters used in real flight. They have different
diagonal sizes: (a) 200mm (1.054kg), (b) 450mm (2.084kg) and
(c) 680mm (4.068kg).

Due to the potential impact of the size and weight
of multicopter on the diversity of the RflyMAD dataset
and the performance of diagnosis methods, real flight data
collection employs three types of quadcopters manufactured
by Droneyee company. The quadcopters used in real flight
can be found in Figure 3. All quadcopters have the same
components and sensors, including a PX4 autopilot, a GPS
module, an onboard computer, and a radio receiver.

Figure 4 presents one trajectory of the quadcopter in our
experiment ground, located in Huailai County, Zhangjiakou
City, Hebei Province, P. R. China. In our experiments, the
quadcopter follows commands from the control sequence,
executing different flight statuses when faults are injected.
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Figure 5. Methods to collect real flight data. Different from
simulation, MAVROS is used to send commands and then
generate BAG data.
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Detailed information about flight statuses and fault types is
introduced in Section 2.2.

Figure 5 illustrates the construction process of real flight
data, which is quite different from that of simulation data.
Firstly, the whole of the PX4 autopilot is used without
shielding the sensor signals. In real flight, the fault injection
module is redeveloped by modifying the core algorithm of
PX4. The firmware version of PX4 used is 1.12.3. The
modified methods can be summarized in three steps as
follows:

• Create a ctrl.msg file for the uORB topic. This file includes
timestamp, control flag, mode flag, and control signals.

• Subscribe to the ctrl signals in each module that need to be
modified. Copy the fault parameters into each module.

• Update firmware signals with fault parameters. If the
corresponding fault occurs, the fault parameters will be
added or multiplied to the original signals.

Secondly, the onboard computer utilizes Robot Operating
System (ROS) Noetic Ninjemys with Ubuntu 20.04 system
to collect information on flight states, sensor signals, and
input control commands through the MAVROS package, also
known as “MAVLink for ROS”. It could transform ROS
topic messages into the format of MAVLink and send them to
PX4 autopilot. Then the messages will be converted into the
format of uORB and published in PX4. Using this method,
the control sequence we have written could be sent into the
core algorithm of PX4 and enable fault injection. Similar to
simulation data, the control sequence will be collected as
Flight Information in the real flight data.

The MAVROS can receive messages from the autopilot
and generate a data file called ROS bag through ROS during
each flight. This data is automatically collected and stored as
a BAG file in the dataset. ULog and TLog data are collected
separately from the autopilot and the QGC.

3.3 Fault injection method
As mentioned in Section 3.1 and Section 3.2, during the
collection process of simulation and real flight data, a similar
fault injection method is used to transfer fault types and
fault parameters to the simulation model or PX4 autopilot
in real flight through the MAVLink interface. Then the fault
parameters can be applied to the original signal to realize
fault injection. The fault injection methods of motors and
sensors will be introduced in detail. For a single motor of
a multicopter, it can be modeled as

T = cT$
2

$ =
$ss

Tms+ 1

$ss = f(km(t)σ)

(1)

where T represents the pulling force generated by the
actuator, which includes the motor and propeller. cT is the
pulling force coefficient of the propeller; $ is the speed of
the motor, $ss is the steady state speed of the motor decided
by the Electronic Speed Control (ESC) under a given throttle
command σ, which is a PWM signal. And km(t) ∈ [0, 1]
is the fault parameter we injected, function f(·) means the
mapping from the throttle command σ to the motor steady
state speed$ss, which generally satisfies the form of a linear

or quadratic function. In Equation (1), the dynamic process
of the brushless motor in the simulation is simplified into
a first order inertial element, and Tm represents the time
constant of the dynamic response.

According to the common situations of motor faults, it can
be divided into three types as follows:
• (a) Sudden Faults, also called Abrupt Faults, which usually

occur instantaneously. After fault injection time tf , the
fault parameter km(t) becomes a constant C ∈ [0, 1).

• (b) Gradual Faults. These types of faults represent slow
changes in system parameters and can be expressed as a
gradual degradation of the motor over time.

• (c) Periodic Faults. These faults appear due to the partial
failure in the system. In our method, these kinds of
faults are defined as occurring in period T0, so the set
represents when faults occur periodically is F = {t ∈ R |
tf + nT0 ≤ t ≤ tf + (n+ 1)T0, n = 0, 2, 4, . . . }

km(t) =

{
1, t /∈ F
C, t ∈ F

. (2)

As for sensor faults, taking an accelerometer as an
example, the measured values can be expressed as

baimeas =
ba+bω × (bω × d) +bω̇ × d− gRT

bee3
bam = Ka ·baimeas + ba + na

ḃa = nba

(3)

where baimeas represents the ideal measured accelerations,
bam are measured accelerations, ba are true values in body
axes, bω are body-fixed angular rates, d is the distance from
the accelerometer to the center of gravity of the multicopter,
RT

be is the rotation matrix from the body-fixed frame to the
inertial frame; Ka is the scale factor, ba represents the drift
noise of the sensor, na and nba are Gaussian white noise.

It is obvious from Equation (3) that the scale factor Ka

and noises such as ba and na are usually the main reasons
for the error between the measured value and true value of the
sensor. Sensor fault injection is able to realize by adjusting
the two items to the following form

bam = (ks(t) ·Ka)
baimeas + ba + na + ksn(t) (4)

where ks(t) is the fault parameter to change the scale factor
and ksn(t) is the fault parameter for sensor noises. The
fault injection methods of other sensors, such as gyroscope,
barometer, magnetometer, and GPS are similar to Equation
(4) and are ignored for the limited space.

4 Data Validation
In this section, the data validation is carried out from two
aspects: (1) the support relationship between simulation data
and real flight data, and the support relationship between
different types of multicopters in real flight data, which are
verified by transfer learning method; (2) the validity of fault
data, which is verified by a statistical anomaly detection
method. All the experiments are conducted on a personal
computer equipped with an Intel(R) Core(TM) i7-12700H
CPU, NVIDIA GeForce RTX 3060 Laptop GPU, 16 GB
memory, and Windows 11 64-bit system.
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4.1 Why need data validation
Compared with the real flight data, the acquisition cost of
simulation data is relatively low, and the simulation data and
real flight data are expected to be consistent so that the real
flight data can be replaced by the simulation data to some
extent. Besides, as mentioned in Section 3.2, the different
sizes and weights of the multicopter may have an impact on
the performance of diagnosis methods. Since it is impossible
for us to collect fault data of all types of multicopters, the real
flight data of existing types of multicopters in the dataset are
expected to have common characteristics, thus they can be
substituted with each other to a certain extent. Validating this
kind of support relationship presents a challenge. A transfer
learning method (Azad et al. 2024; Hakim et al. 2022) is used
to check the transfer ability of two kinds of data, so as to
judge the equivalency between them.

In addition to the supporting relationships within the
dataset, RflyMAD, as a fault dataset, should contain faults
that can be diagnosed and have a certain degree of challenge
in order to promote subsequent research. Therefore, a
statistical anomaly detection method (Keipour et al. 2019)
and related evaluation metrics proposed in Keipour et al.
(2021) are used to test our RflyMAD dataset. While verifying
the validity of the fault data in RflyMAD, it provides a
benchmark for subsequent research.

4.2 Support relationship between simulation
data and real flight data

In the application of fault diagnosis based on data-driven
methods, transfer learning can be used to replace part of the
real flight data with high-quality simulation data to complete
the training of the model, thereby reducing the demand and
dependence on real flight data.

4.2.1 Experimental data and preprocessing For exper-
iments, ULog data from real flight and GTData from the
simulation are used to diagnose single-motor fault during
hovering flight. The fault state refers to the situation that the
pulling force of a single motor falls from 100% to 85% at a
specific moment. The diagonal sizes of the simulated aircraft
and the actual aircraft are both 450mm, as shown in Figure
3(b).

By using the toolkits we developed, the ULog and GTData
are converted into CSV format and ordered by timestamps.
Although the different sensor data in the same flight
case have different starting working times and sampling
frequencies, it is necessary to synchronize the clocks of these
sensors and unify the sensor data acquisition time accuracy
to 10ms. Then interpolation processing is performed on the
sensor sampling data whose accuracy is not satisfied. Finally,
each sample contains timestamps and 12 characteristic
information such as velocity, angular velocity, acceleration,
and Euler angles in three dimensions.

Selecting 600 SIL data samples, 600 HIL data samples,
600 real flight data samples, and the normal and fault data
account for 50% of the samples. In the experiment, 400
pieces are randomly sampled from the SIL simulation data,
HIL simulation data, and the real flight data respectively,
described as DSIL, DHIL, and DR. 140 pieces of HIL
simulation data and 140 pieces of real flight data are used
as two different test sets, denoted as DTestHIL and DTestR.

Table 3. Model parameters in transfer learning method.

No. Layers Output

1 Convolution1D 12×64
2 Batch Normalization 12×64
3 Convolution1D 12×32
4 Batch Normalization 12×32
5 Dense 1×64
6 Batch Normalization 1×64
7 Dense 1×32
8 Batch Normalization 1×32
9 Dense 1×2

Table 4. Average accuracy of 13 experiments with different
support relationship and adaptive algorithm.

No.
The support
relationship Training set Test set

Adaptive
algorithm

Average
accuracy

1

SIL and
real data

10%DR ∼90%DR

DTestR

None 45.7%∼100%
2 DSIL None 63%
3 DSIL∪10%DR None 96%
4 DSIL∪10%DR TrAdaBoost 97%
5 DSIL∪10%DR AdaBN 98.2%
6

HIL and
real data

DHIL None 55.9%
7 DHIL∪10%DR None 95.8%
8 DHIL∪10%DR TrAdaBoost 99.1%
9 DHIL∪10%DR AdaBN 99.1%
10

SIL and
HIL data

DSIL

DTestHIL

None 97%
11 DSIL∪10%DHIL None 97.8%
12 DSIL∪10%DHIL TrAdaBoost 97.8%
13 DSIL∪10%DHIL AdaBN 97.8%

Note: The average accuracy in Experiment 1 is explained in Figure 6.

Accordingly, 60 pieces of real flight data and 60 pieces of
HIL simulation data are selected as two different verification
sets.

4.2.2 Model and domain adaptation algorithms The
model used in the experiment is an improved model based
on the classic LeNet-5 model (LeCun et al. 1998), and
the model parameters are shown in Table 3. The classic
TrAdaBoost (Dai et al. 2007) and AdaBN (Li et al. 2018)
domain adaptation algorithms in transfer learning are used to
verify the support relationship between simulation data and
real flight data. By varying the number of samples from DR

in the training set and the domain adaptation algorithm, the
results of different experiments are compared and analyzed.

Experiments are implemented using Google’s TensorFlow
toolbox4. To minimize the loss function, the Adam
optimization algorithm is used to train the model. Epochs are
set to 10 in different experiments, and the average prediction
accuracy is calculated after multiple training. Assume that
the total amount of data pieces in the test set is NT , and the
amount of pieces in the test set that can be predicted correctly
is n, including True Positive (TP) and True Negative (TN) in
confusion matrix, so the accuracy can be defined as

Acc =
n

NT
(5)

The experimental results are shown in Table 4 and Figure 6.
The average accuracy in the Table 4 means the experiment
is conducted 10 times for each test set in order to avoid
accidental.

4.2.3 Interpretation of experimental results Based on
the above experiments, the following conclusions could be
drawn.
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Table 1 Model parameters. 

No. Layers Output 

1 Convolution1D 10 × 64 

2 Batch Normalization 10 × 64 

3 Convolution1D 10 × 32 

4 Batch Normalization 10 × 32 

5 Dense 1 × 64 

6 Batch Normalization 1 × 64 

7 Dense 1 × 32 

8 Batch Normalization 1 × 32 

4 Experimental results 

Table 2 Experimental results. 

No. Training set Adaptive algorithm Average accuracy 

1 10%𝑇𝑡~90%𝑇𝑡 None 
45.7%~99% (shown in Fig 

1) 

2 𝑇𝑠 None 63% 

3 𝑇𝑠 ∪ 10%𝑇𝑡 None 96% 

4 𝑇𝑠 ∪ 10%𝑇𝑡 TrAdaBoost 97% 

5 𝑇𝑠 ∪ 10%𝑇𝑡 AdaBN 98.2% 

Fig. 1 Experimental results of different 𝑇𝑡 ratios in the training set 

Through the above experiments, the following conclusions could be drawn: 

1. In experiment 1, with the gradual increase of the data sample size of the target domain (𝑇𝑡) in

the training set, the model prediction accuracy basically showed an upward trend. 

2. In experiment 2, when there was no domain adaptation algorithm and data set 𝑇𝑡, the model

could not apply the feature recognition method learned by the source domain (𝑇𝑠) to the target

domain, resulting in low prediction accuracy, which also indicated that the data distribution gap 

between the source domain and the target domain was large.   

3. Through experiments 2 and 3, it could be found that after adding target domain data to the

training set, the overall data distribution and target domain were reduced, thus improving the 

prediction accuracy under the same model. 

4. In experiments 4 and 5. With the domain adaptation algorithm, the prediction accuracy of the

model could reach the same level when 50% of the training is performed. Therefore, it could be 
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Figure 6. Results of average accuracy by using different ratios
of DR to form the training set and using DTestR as the test set.

• Differences among DSIL, DHIL, and DR can be obtained
by using a single source of data as the training set for
the transfer learning method. Using DTestR as the test
set, only a sufficient number of DR can achieve higher
accuracy. In Experiment 1, with the gradual increase of the
data sample size of the DR in the training set, the model
prediction accuracy basically exhibits an increasing trend
as shown in Figure 6. In Experiments 2 and 6, when there is
no domain adaptation algorithm and datasetDR, the model
could not apply the feature recognition method learned
by DSIL or DHIL, resulting in low prediction accuracy,
which also indicated that the data distribution gap between
the SIL or HIL simulation data (source domain) and the
real flight data (target domain) is large.

• By adding real flight data to the source domain that is
dominated by simulation data, the quality of the simulation
data can be verified. The combination of a small amount
of real flight data and simulation data can achieve better
prediction results. As shown in Figure 6, using 10% DR

can only achieve an accuracy of about 60%, which is
similar to the results of simulation data in Experiments 2
and 6. Through Experiments 3 and 7, it could be found
that after adding target domain data to the training set, the
gap between overall data distribution and target domain is
reduced, thus improving the prediction accuracy under the
same model. Therefore, it could be shown that the SIL and
HIL simulation data quality is high.

• By adding domain adaptation algorithms, the transfer
learning capabilities of the model can be further improved.
In Experiments 4, 5, 8, and 9, the prediction accuracy of
the model could reach the same level when 50% of the
training is performed, which means the classical domain
adaptation method combined with enough simulation data
could approximately replace 40% of the real flight data.

• In addition to verifying the support relationship between
simulation data and real flight data, it is verified that SIL
simulation data could effectively support HIL simulation
data in a similar way through Experiments 10-13. Even
without HIL simulation data and domain adaptation
algorithm, high detection accuracy could still be achieved.

• By using transfer learning methods, the average accuracy
of Experiments 1, 3-5 and 7-13 can reach a high level.
This is because only the simple fault type of single motor
fault during the hovering flight data in the dataset are

used for training and testing, in order to illustrate that
our data quality is high. When the fault types are mixed
together, or more complex types of fault under other flight
statuses are tested, such as a milder fault parameters or all
motor fails to some extent, it will not be easy to achieve
such a high accuracy. More experimental results under
different fault states and flight statuses could be seen at
the supporting documentation about transfer learning on
RflyMAD dataset website 5.
Using the classic transfer learning method, the experi-

mental verification of the support relationship between the
simulation data and real flight data is carried out through the
flight log file of the multicopter, and the support relationship
between them is quantitatively analyzed, which provided a
basis for the subsequent real flight data collection, simulation
data quality evaluation, and fault diagnosis algorithm analy-
sis.

4.3 Support relationship between different
types of multicopters in real flight data

In this section, additional experiments are conducted to
verify the transfer ability of the real flight data from one type
of multicopter to new types. The experimental environment
is consistent with the above experiments in Section 4.2.

After data preprocessing, the training set (source domain)
data in the experiment comes from the real flight data of
the multicopters with diagonal sizes of 450mm, described
as D450R, and the test set (target domain) data comes from
the real flight data of the multicopters with diagonal sizes of
200mm and 680mm, denoted as DTest200R and DTest680R

respectively. So these multicopters in the source and target
domain are different. In the experiment, a single motor fault
is taken as an example, the experiment is conducted 10
times for each test set, and the average prediction accuracy
is calculated as shown in Table 5. The average accuracy
defined here is similar to that in Section 4.2.2. In order to
get closer to real conditions, the same fault type is used in
the source domain and the target domain, but with different
fault parameters which represent the degrees of failures. The
fault parameters are described as follows:
• Source domain failure: single motor fails from 100% to

80% at a specific moment.
• Target domain failure: single motor fails from 100% to

90% at a specific moment.

Table 5. Average accuracy of transfer learning experiments
with different types of multicopters.

No.
The support
relationship Training set Test set

Adaptive
algorithm

Average
accuracy

1 Different types
of multicopters D450R

DTest200R AdaBN 96.49%
2 DTest680R 87.28%

It can be concluded from the above experiments that the
real flight data from the multicopter with a diagonal size
of 450mm can effectively predict the failures of two other
different types of multicopters, with an average prediction
accuracy of 91.88%, indicating that the data collected in the
source domain includes the common fault characteristics in
single motor failures of multicopters with different diagonal
size and weight. The results also demonstrate that the use of
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transfer learning or other similar methods can help extract
common fault features, thereby predicting the same faults
that do not exist in the training set. In conclusion, the
experiments verify that the real flight data collected in
RflyMAD is of high quality and as long as the common
characteristics of faults can be extracted, the fault prediction
methods can be applied to other multicopter types.

4.4 The validity of fault data in RflyMAD
dataset

In this section, a statistical anomaly detection , which is a
traditional fault detection method, is used to diagnose motor
faults in RflyMAD dataset.

This method uses the Recursive Least Squares (RLS)
to detect abnormal behaviors of UAVs, due to the
characteristics of RLS, this method can be easily deployed on
UAVs and realize real-time online fault detection. The core
idea of this method is to use RLS to estimate the relationship
between a pair of correlated input and output signals, such
as the commanded signal and the actual measured signal of
roll/pitch, then an estimated model is obtained. Next step
is to use the estimated model to predict the outputs and
compare them with the measured signals, thereby obtaining
the error term. In the last step, while designing the criteria
for anomaly detection, Welford’s recursive method is used
to calculate the variance of the error term, and finally the Z-
Score is obtained to judge whether there is an anomaly.

In our manuscript, we used a similar method and input
signals like those in article (Keipour et al. 2019) to conduct
experiments. Therefore the commanded roll and pitch signals
uroll and upitch, and the measured roll and pitch signals
yroll and ypitch are used as the input pairs. Specifically for
RflyMAD dataset, signals used in experiments are obtained
from processed ULog files, which are shown in the Table 6.

Table 6. List of signals used in experiments and where these
signals can be obtained in processed ULog files.

Name Source File
in ULog Usage

uroll, upitch actuator controls 0 0.csv RLS method
yroll, ypitch sensor combined 0.csv RLS method
Fault state rfly ctrl lxl 0.csv Fault ground truth

Ground contact vehicle land detected 0.csv Get flight time

Similar to Section 4.2, ULog data are used to diagnose
motor faults. But there are some differences, the data selected
here contain various types of motor faults, such as one, two,
three or four motor faults under different flight statuses. By
using the toolkits we developed, the processed ULog data are
unified into the same timestamp and adjusted to a uniform
frequency of 20 Hz. In our experiments, we also used the
inputs from the last second (20 samples) for the estimation
of the new output. The experimental results are shown in the
Table 7.

The accuracy defined here is quite different, for this RLS
based fault diagnosed method requires a segment of data
with a continuous time series for fault detection. Therefore,
a whole flight data is regarded as a sample, and as long as
the fault is detected at the time when the fault is injected, the
sample is considered to be successfully diagnosed. If there is

no fault in a flight and the diagnosis algorithm also indicates
that no fault occurs throughout the flight, it is also considered
to be a successful diagnosis.

Table 7. Test results for validity of fault data with different types
of sub-dataset.

Type of
Sub-dataset

# of
tests

Flight
Times(s)

Avg.
Detection
Times(s)

Max
Detection
Times(s)

Accuracy
(%)

SIL Sim 14 467.25 0.13 0.3 85.71
HIL Sim 14 424.65 0.11 0.54 64.29

Real Flight 14 1492.35 0.84 1.25 64.29

Total 42 2384.25 0.28 1.25 71.43

Based on the experimental results and comparison with the
experimental results in Keipour et al. (2019), the following
conclusions could be drawn.
• By using statistical anomaly detection method, fault

conditions in SIL and HIL simulation and real flight data
can be successfully detected, which illustrates the validity
of the fault data.

• The total accuracy of experiments in this manuscript is
a little lower than that of the same method using ALFA
dataset. This is because, on the one hand, the ALFA
dataset contains faults such as ‘Engine full power loss’
or ‘Elevator stuck at zero’, while RflyMAD contains fault
states where the motors are not completely failed. On the
other hand, the roll and pitch channels may have more
obvious characteristics when the fixed wing fails than the
multicopters. So for multicopters, other input pairs might
be a better choice. This result also reflects from another
aspect that the RflyMAD dataset is still challenging.

• The fault diagnosis accuracy of SIL simulation data
is higher than that of HIL simulation and real flight
data. These results show that although the model in SIL
simulation has ideal assumptions, SIL data is still valuable.
This is because SIL data can still be used to learn the
characteristics of faults, as introduced in transfer learning
and the above experimental results. However, the accuracy
of HIL simulation and real flight data is basically the same,
which shows that HIL simulation data is closer to real
flight data than SIL. An example is that when a single
motor fails from 100% to 90% at a certain moment, the
HIL and real flight data cannot be diagnosed, but the
SIL data can still be successfully diagnosed. Although
the fault cannot be diagnosed with the HIL simulation
and real flight data, the fault indicator, or the Z-Score,
in the method still has an obvious change when the fault
happened. This also indicates the validity of fault data in
RflyMAD dataset.

5 Discussion and Future Work

5.1 Discussion
To the best of our knowledge, there are few high-
quality datasets with abnormality data for multicopters,
or the high-quality datasets are not open-source for
some reason. The RflyMAD dataset is an open-source
dataset that contains both normal and abnormal data
with the simulation and real flight for multicopters. The
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introduction video of the RflyMAD dataset is available at
https://youtu.be/MZby4mOPRu4.

Although RflyMAD includes numerous fault types and
flight statuses, it is still insufficient. Firstly, flight cases
for each fault type are inadequate in the real flight sub-
dataset. We hope other researchers and enthusiasts would
join us and contribute their data with different faults and
hardwares by using our collection standards and dataset
formats. Besides, the types of data should be diverse. For
example, the RflyMAD dataset mainly consists of flight
information, ULog, Telemetry log, and processed files from
the RflySim platform or ROS system. The addition of more
sensors, such as motor encoders, and capturing videos from
multiple perspectives during the flight could expand the
applicable fields of the RflyMAD dataset.

5.2 Future work
We hope that the RflyMAD dataset will become an important
dataset for multicopter research. So we will continue
supporting the development of RflyMAD, providing some
basic codes to facilitate the use of the dataset and to
design some model-based and data-driven methods as
benchmarks for other researchers to compare and improve
their algorithms. As mentioned above, we will add fault types
and flight cases in simulation and real flight. The whole
dataset and the succeeding data will be publicly available and
can be accessed from our website. Besides, efficient toolkits
will also be developed to improve the quality of the dataset.
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Notes

1. NASA’s Open Data Portal website: https://data.nasa.gov/
2. The QGroundControl website: http://qgroundcontrol.com/
3. RflySim platform website: https://rflysim.com/
4. TensorFlow toolbox: https://www.tensorflow.org/
5. The support document of RflyMAD dataset: https://rfly-

openha.github.io/documents/4 resources/transfer leanring.html
6. Droneyee Company website: http://www.feisilab.com/
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