local_outlier_factor
xxxxxxxxxx
local_outlier_factor(points, k)
xxxxxxxxxx
lof = local_outlier_factor(points, k)
The Local Outlier Factors (LOF) of all the points are computed. And the LOF is an algorithm used for outlier detection, which is proposed by Breunig in [1].
xxxxxxxxxx
>>> from OpenHA.processing.preprocess import local_outlier_factor
>>> import numpy as np
>>> points = np.array([0, 1, 1.2, 2, 3, 10])
>>> print(local_outlier_factor(points, 3))
[1.01666667 1.01666667 0.95238095 0.975 1.16190476 5.525 ]
points
—— An array of vectors of length n
, namely n
points, specified as an N-D array.
k
—— Number of neighbors for k-distance and k-neighbors, specified as a positive integer scalar.
Name of the parameters | Is optional? | Source, dialog or input port? |
---|---|---|
points | No | Input port |
k | No | Dialog |
[1] M. M. Breunig, H.-P. Kriegel, R. T, Y. Ng, J. Sander. "LOF: Identifying Density-Based Local Outliers." Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, 2000, pp. 93–104. DOI: 10.1145/342009.335388.