interpolation
Interpolation.
xxxxxxxxxx
interpolation(x, y, x_est)
interpolation(x, y, x_est, kind)
xxxxxxxxxx
y_est = interpolation(x, y, x_est)
x
and y
are arrays of values used to approximate some function f: y = f(x)
.
This function returns an array of the interpolated values at x_est
by linear interpolation as default.
xxxxxxxxxx
y_est = interpolation(x, y, x_est, kind)
The interpolation method is specified by the parameter kind
.
xxxxxxxxxx
>>> from OpenHA.processing.preprocess import interpolation
>>> import numpy as np
>>> x = np.array([0, 1, 2, 3])
>>> y = x + np.random.random((4,)) * 0.1
>>> x_est = np.array([1.5, 2.5])
>>> y_est = interpolation(x, y, x_est)
>>> print(x, y)
[0 1 2 3] [0.04362888 1.03800604 2.0397634 3.09172125]
>>> print(y_est)
[1.53888472 2.56574232]
xxxxxxxxxx
>>> from OpenHA.processing.preprocess import interpolation
>>> import numpy as np
>>> x = np.array([0, 1, 2, 3])
>>> y = x**2 + np.random.random((4,)) * 0.1
>>> x_est = np.array([1.5, 2.5])
>>> y_est = interpolation(x, y, x_est, method='cubic')
>>> print(x, y)
[0 1 2 3] [0.03392971 1.08425927 4.08819547 9.0204196 ]
>>> print(y_est)
[2.34360896 6.31485397]
x
——
y
—— A N-D array of real values. The length of y
along the interpolation axis must be equal to the length of x
.
x_est
—— A 1-D array of values to evaluate the interpolant.
kind
—— Kind of interpolation, specified as one of the following strings.
zero
, slinear
, quadratic
and cubic
refer to a spline interpolation of zeroth, first, second or third order.previous
and next
simply return the previous or next value of the point.nearest-up
and nearest
differ when interpolating half-integers (e.g., 0.5, 1.5) in that nearest-up
rounds up and nearest
rounds down.The default is linear
.
Name of the parameters | Is optional? | Source, dialog or input port? |
---|---|---|
x | No | Input port |
y | No | Input port |
x_est | No | Input port |
kind | Yes | Dialog |